Dirac–Krein Systems on Star Graphs
نویسندگان
چکیده
منابع مشابه
Quantum Fields on Star Graphs
We construct canonical quantum fields which propagate on a star graph modeling a quantum wire. The construction uses a deformation of the algebra of canonical commutation relations, encoding the interaction in the vertex of the graph. We discuss in this framework the Casimir effect and derive the correction to the Stefan-Boltzmann law induced by the vertex interaction. We also generalize the al...
متن کاملFault Tolerance on Star Graphs
A multiprocessor system consists of a set of processing units and each of them has its own local memory. The processing units in a multiprocessor system are linked in some topology. What we are interested in is a topology proposed by Akers et al. [2,3], called star graph. An n-dimensional star graph can be represented by S,, = (V,,, E,,), where V,, consists of n! nodes in which each node is ide...
متن کاملOn Star Coloring of Graphs
In this paper, we deal with the notion of star coloring of graphs. A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two neighbors are assigned the same color) such that any path of length 3 in G is not bicolored. We give the exact value of the star chromatic number of different families of graphs such as trees, cycles, complete bipartite graphs, outerplanar gr...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2016
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-016-2311-4